

Babylonians

- The Babylonians lived in Mesopotamia, a fertile plain between the Tigris and Euphrates rivers.
- Babylonian society replaced both the Sumerian and Akkadian civilizations.
- The Sumerians built cities, developed a legal system, administration, a postal system and irrigation structure.
- The Akkadians invaded the area around 2300 BC and mixed with the Sumerians.

ewinter & Widulski The Saga of Mathematics

Babylonians

- The Akkadians invented the abacus, methods for addition, subtraction, multiplication and division.
- The Sumerians revolted against Akkadian rule and, by 2100 BC, had once more attained control.
- They developed an abstract form of writing based on *cuneiform* (i.e. wedge-shaped) symbols.
- Their symbols were written on wet clay tablets which were baked in the hot sun and many thousands of these tablets have survived to this day.

Lewinter & Widulski

The Saga of Mathematics

Babylonians

- It was the use of a stylus on a clay medium that led to the use of cuneiform symbols since curved lines could not be drawn.
- Around 1800 BC, Hammurabi, the King of the city of Babylon, came into power over the entire empire of Sumer and Akkad, founding the first Babylonian dynasty.
- While this empire was not always the center of culture associated with this time in history, the name Babylonian is used for the region of Mesopotamia from 2000 BC to 600 BC.

Lewinter & Widulski

The Saga of Mathematics

Babylonian Cuneiform

- Because the Latin word for "wedge" is cuneus, the Babylonian writing on clay tablets using a wedge-shaped stylus is called cuneiform.
- Originally, deciphered by a German schoolteacher Georg Friedrich Grotefend (1775-1853) as a drunken wager with friends.
- Later, re-deciphered by H.C. Rawlinson (1810-1895) in 1847.
- Over 300 tablets have been found containing mathematics.

Lewinter & Widulski

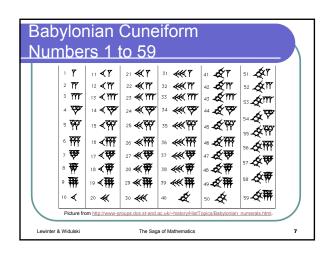
The Saga of Mathematics

Babylonian Cuneiform

- Babylonians used a positional system with base 60 or the sexagesimal system.
- A positional system is based on the notion of place value in which the value of a symbol depends on the position it occupies in the numerical representation.
- For numbers in the base group (1 to 59), they used a simple grouping system

Lewinter & Widulski

The Saga of Mathematics



Babylonian Numerals

- We will use
 □ for 10 and ∇ for 1, so the number 59 is
- For numbers larger than 59, a "digit" is moved to the left whose place value increases by a factor of 60.
- So 60 would also be ∇ .

winter & Widulski The Saga of Mathematics

Babylonian Numerals

Consider the following number

$$\bowtie \geqslant \bowtie \bowtie$$

- We will use the notation (3, 25, 4)₆₀.
- This is equivalent to

$$3 \times 60^2 + 25 \times 60 + 4 = 12{,}304$$

Lewinter & Widulski The Saga of Mathematics

Babylonian Numerals

- Drawbacks:
 - The lack of a sexagesimal point
 - Ambiguous use of symbols
- These lead to difficulties in determining the value of a number unless the context gives an indication of what it should be.

Lewinter & Widulski

The Saga of Mathematics

Babylonian Numerals

 To see this imagine that we want to determine the value of

$$\otimes \otimes \otimes \otimes$$

• This could be any of the following:

$$2 \times 60 + 24 = 144$$

$$2 \times 60^2 + 24 \times 60 = 8640$$

$$2 + \frac{24}{60} = 2\frac{2}{5}$$

Lewinter & Widulski

The Saga of Mathematics

Babylonian Numerals

- The Babylonians never achieved an absolute positional system.
- We will use 0 as a placeholder, commas to separate the "digits" and a semicolon to indicate the fractional part.
- For example, (25, 0, 3; 30)₆₀ will represent

$$25 \times 60^2 + 0 \times 60 + 3 + \frac{30}{60} = 90,003 \frac{1}{2}$$

Lewinter & Widulski

e Saga of Mathematics

More Examples

• (25, 0; 3, 30)₆₀ represents

$$25 \times 60 + 0 + \frac{3}{60} + \frac{30}{60^2} = 1500 + \frac{7}{120}$$

• (10, 20; 30, 45)₆₀ represents

$$10 \times 60 + 20 + \frac{30}{60} + \frac{45}{60^2} = 620 \frac{41}{80}$$

Louinter & Widuleki

The Saga of Mathematics

More Examples

• (5; 5, 50, 45)₆₀ represents

$$5 + \frac{5}{60} + \frac{50}{60^2} + \frac{45}{60^3} = 5 \frac{1403}{14400}$$

 Note: Neither the comma (,) nor the semicolon (;) had any counterpart in the original Babylonian cuneiform.

Lewinter & Widuls

The Saga of Mathematics

Babylonian Arithmetic

- Babylonian tablets contain evidence of their highly developed mathematics
- Some tablets contain squares of the numbers from 1 to 59, cubes up to 32, square roots, cube roots, sums of squares and cubes, and reciprocals.
- See <u>Table 1</u> in The Saga of Mathematics (page 29)

Lewinter & Widulski

The Saga of Mathematics

Babylonian Arithmetic

- For the Babylonians, addition and subtraction are very much as it is for us today except that carrying and borrowing center around 60 not 10.
- Let's add (10, 30; 50)₆₀ + (30; 40, 25)₆₀

10, 30; 50, 0

+ 30;40,25

11, 1; 30, 25

Lewinter & Widulski

The Saga of Mathematics

Babylonian Arithmetic

- Remember to line the numbers up at the sexagesimal point, that is, the semicolon (;) and add zero when necessary.
- Note that since 40 + 50 = 90 which is greater than 60, we write 90 in sexagesimal as (1, 30)₆₀.
- So we put down 30 and carry the 1.
- Similarly for the 30 + 30 + 1 (that we carried).

Lewinter & Widulski

The Saga of Mathematics

Babylonian Multiplication

- Some tablets list the multiples of a single number, *p*.
- Because the Mesopotamians used a sexagesimal (base 60) number system, you would expect that a multiplication table would list all the multiples from 1p, 2p, ..., up to 59p.
- But what they did was to give all the multiples from 1p up to 20p, and then go up in multiples of 10, thus finishing the table with 30p, 40p and 50p.

Lewinter & Widulski

The Saga of Mathematics

18

Babylonian Multiplication

- They would then use the distributive law $a \times (b + c) = a \times b + a \times c$
- If they wanted to know, say, 47p, they added 40p and 7p.
- Sometimes the tables finished by giving the square of the number p as well.
- Since they had tablets containing squares, they could also find products another way.

Lewinter & Widulski

The Saga of Mathematics

19

Babylonian Multiplication

 Using tablets containing squares, the Babylonians could use the formula

$$ab = [(a+b)^2 - a^2 - b^2] \div 2$$

• Or, an even better one is

$$ab = [(a+b)^2 - (a-b)^2] \div 4$$

Lewinter & Widulski

The Saga of Mathematics

Babylonian Multiplication

	10	1,40	19	6,1	
	11	2,1	20	6,40	
	12	2,24	21	7,21	
	13	2,49	22	8,4	
	14	3,16	23	8,49	
	15	3,45	24	9,36	
	16	4,16	25	10,25	
	17	4,49	26	11,16	
/	18	5,24	27	12,9	

- Using the table at the right, find 11×12.
- Following the formula, we have $11 \times 12 = (23^2 1^2) \div 4 = (8, 48)_{60} \div 4 =$

 $(2, 12)_{60}$

Lewinter & Widulski

The Saga of Mathematics

Babylonian Multiplication

 Multiplication can also be done like it is in our number system.

10; 50× 30; 20

 Remember that carrying centers around 60 not 10.

3, 36, 40 + 5, 25, 0

For example,

 $10\frac{5}{6} \times 30\frac{1}{3}$

5, 28; 36, 40

winter & Widulski The Saga of Mathematics

Babylonian Division

- Correctly seen as multiplication by the reciprocal of the divisor.
- For example,

 $2 \div 3 = 2 \times (1/3) = 2 \times (0;20)_{60} = (0;40)_{60}$

- For this purpose they kept a table of reciprocals (see <u>Table 1</u>, page 29).
- Babylonians approximated reciprocals which led to repeating sexagesimals.

Lewinter & Widulski

The Saga of Mathematics

Babylonian Division

- $44 \div 12 = 44 \times (1/12) = 44 \times (0;5)_{60} = (3;40)_{60}$.
 - Note: 5 × 44 = 220 and 220 in base-60 is 3 40
- $12 \div 8 = 12 \times (1/8) = 12 \times (0;7,30)_{60} = (1;30,0)_{60}$.
- $25 \div 9 = 25 \times (1/9) = 25 \times (0;6,40)_{60} = (2;46,40)_{60}$.

Lewinter & Widulski

The Saga of Mathematics

Babylonian Division

- When fractions generated repeating sexagesimals, they would use an approximation.
- Since $1/7 = (0;8,34,17,8,34,17,...)_{60}$.
- They would have terminated it to approximate the solution and state that it was so, "since 7 does not divide".
- They would use $1/7 \cong (0;8,34,17,8)_{60}$.

Lewinter & Widulski

The Saga of Mathematics

25

Babylonian Algebra

- Babylonian could solve linear equations, system of equations, quadratic equations, and some cubics as well.
- The Babylonians had some sort of theoretical approach to mathematics, unlike the Egyptians.
- Many problems were intellectual exercises which demonstrate interesting numerical relations.

Lewinter & Widulski

The Saga of Mathematics

Linear Equations

- I found a stone but did not weigh it; after I added to it ¹/₇ of its weight and then ¹/₁₁ of this new weight, I weighed the total 1 mina. What was the original weight of the stone?
 - [Note: 1 mina = 60 sheqels and 1 sheqel = 180 se.]
- Answer: $\frac{2}{3}$ mina, 8 sheqels, 22 $\frac{1}{2}$ se.
- Or 48.125 shegels!

Lewinter & Widulski

The Saga of Mathematics

Linear Equations

• Call the original weight x, and solve

$$\left(x + \frac{1}{7}x\right) + \frac{1}{11}\left(x + \frac{1}{7}x\right) = 60$$

This can be reduced to

$$\frac{96}{77}x = 60$$

• To solve, multiply both sides by the reciprocal, $x = (5/8) \times 77$

Lewinter & Widulski

The Saga of Mathematics

Simultaneous Equations

- There are two silver rings; $^{1}/_{7}$ of the first and $^{1}/_{11}$ of the second ring are broken off, so that what is broken off weighs 1 sheqel. The first diminished by its $^{1}/_{7}$ weighs as much as the second diminished by its $^{1}/_{11}$. What did the silver rings weigh?
- Answer: 4.375 sheqels and 4.125 sheqels.

Lewinter & Widulski

The Saga of Mathematics

Simultaneous Equations

Consider the system

$$\frac{x}{7} + \frac{y}{11} = 1$$
, $\frac{6x}{7} = \frac{10y}{11}$

- This can be solved by substitution.
- Multiply both sides of the first equation by 6, gives

$$\frac{6x}{7} + \frac{6y}{11} = 6$$

Lewinter & Widulski

The Saga of Mathematics

Simultaneous Equations

Substituting yields

$$\frac{10y}{11} + \frac{6y}{11} = 6 \implies \frac{16y}{11} = 6$$

Multiply both sides by the reciprocal

$$y = \frac{11}{16} \times 6 = \frac{33}{8} = 4.125$$

 Using this value in the second equation gives x.

Lewinter & Widulski

The Saga of Mathematics

31

Quadratic Equations

- I have added the area and two-thirds of the side of my square and it is 0;35. What is the side of the square?
- They solved their quadratic equations by the method of "completing the square."
- The equation is

$$x^2 + \frac{2}{3}x = \frac{35}{60}$$

Lewinter & Widulski

The Saga of Mathematics

Completing the Square

- You take 1 the coefficient [of x]. Twothirds of 1 is 0;40. Half of this, 0;20, you multiply by 0;20 and it [the result] 0;6,40 you add 0;35 and [the result] 0;41,40 has 0;50 as its square root. The 0;20, which you multiplied by itself, you subtract from 0;50, and 0;30 is [the side of] the square.
- Amazing! But what is it really saying?

Lewinter & Widulski

The Saga of Mathematics

Completing the Square

- To solve: $x^2 + ax = b$
- Take ½ of the coefficient of x.
- Square it.
- Add the right-hand side to it.
- Square root this number.
- Finally subtract ½ of the coefficient of x.

$$x = \sqrt{\left(\frac{a}{2}\right)^2 + b} - \frac{a}{2}$$

Lewinter & Widulski

The Saga of Mathematics

Quadratic Formula

Today, we use the quadratic formula:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

 This formula is derived by completing the square on the general quadratic equation:

$$ax^{2} + bx + c = 0$$

Lewinter & Widulski

The Saga of Mathematics

Square Roots

- The Babylonians had an accurate and simple method for finding square roots.
- The method is also known as Heron's method, after the Greek mathematician who lived in the first century AD.
- Also known as Newton's method.
- Indian mathematicians also used a similar method as early as 800 BC.

Lewinter & Widulski

The Saga of Mathematics

36

Square Roots

- The Babylonians are credited with having first invented this square root method in 1900 BC.
- The Babylonian method for finding square roots involves dividing and averaging, over and over, obtaining a more accurate solution with each repetition of the process.

Lewinter & Widulski

The Saga of Mathematics

37

Square Root Algorithm

- 1. Make a guess.
- Divide your original number by your quess.
- 3. Find the average of these numbers.
- 4. Use this average as your next guess and repeat the algorithm three times.

Lewinter & Widulski

The Saga of Mathematics

An Example

- Let's try to find the square root of 37.
- We know a good guess is 6.
- So using the method, we divide the original number by the guess.
 37/6 = 6.1666666666666...
- Find the average of the two numbers. (6 + 6.1666...)/2 = 6.08333333333...

Lewinter & Widulski

The Saga of Mathematics

An Example

 Use this average as the next guess and repeat the algorithm three times.

37/6.0833... = 6.0821917808219178...

- (6.08333...+ 6.0821917...)/2 = 6.0827625570776255707...
- Repeating a third time yields6.0827625302982197479479476906083

Lewinter & Widulski

The Saga of Mathematics

Percentage Error

- The answer obtained using the calculator on the computer is:
 - 6.0827625302982196889996842452021
- If we calculate the percentage error, that is.
 - Take the difference in the answers (the error).
 - Divide that by the actual answer, and then
 - Multiply the result by 100.

Lewinter & Widulski

The Saga of Mathematics

Percentage Error

- We can see that this method gives an error of approximately
 - $5.894826344 \times 10^{-17}$
- The percentage error is $9.69103481383\times 10^{-16}$
- Their formula yields a result that is accurate to 15 decimal places.
- Not bad for 2000 B.C.!!!!

Lewinter & Widulski

The Saga of Mathematics

Square Root of 2 (YBC 7289)

- The side of the square is labeled 30 or (0; $30)_{60} = \frac{1}{2}$.
- The diagonal is labeled $(1;24,51,10)_{60} = 1.4142129$ on top and $(0;42,25,35)_{60} = 0.7070647$ below.

Lewinter & Widulski

The Saga of Mathematics

Square Root of 2

- Comparing these numbers with $\sqrt{2} = 1.414213562...$ and $1/\sqrt{2} = 0.707106...$ we can see that the tablet represents a sophisticated approximation to $\sqrt{2}$ and its reciprocal.
- We can arrive at their approximation if we use their method with an initial guess of 3/2.

Louintor & Widuleki

The Saga of Mathematics

Babylonian Geometry

- The Babylonians were aware of the link between algebra and geometry.
- They used terms like length and area in their solutions of problems.
- They had no objection to combining lengths and areas, thus mixing dimensions.

Lewinter & Widulski

The Saga of Mathematics

Babylonian Geometry

- They were familiar with:
 - The formulas for the area of a rectangle, right triangles, isosceles triangle, trapezoid, and parallelograms.
 - The Pythagorean Theorem.
 - The proportionality of the sides of similar triangles.
 - The fact that in an isosceles triangle, the line joining the vertex to the midpoint of the base is perpendicular to the base.

Lewinter & Widulski

The Saga of Mathematics

Babylonian Geometry

- Babylonian tablets have been found in which they used the value 3 for π .
- They estimated the circumference of a circle as 3 times the diameter, $C = 3 \times d$.
- The area of the circle as $A = C^2/12$.
- The Babylonians also had an estimate of π equivalent to (3; 7, 30)₆₀ which is equal to 3.125.

Lewinter & Widulski

The Saga of Mathematics

Babylonian Geometry

- Many problems dealt with lengths, widths, and area.
- Given the semi-perimeter x + y = a and the area xy = b of the rectangle. Find the length and width.
- Given the the area and the difference between the length and width. Find the length and width.

Lewinter & Widulski

The Saga of Mathematics

Babylonian Geometry

- The length exceeds the width by 10. The area is 600. What are the length and width?
- We would solve this by introducing symbols.
- Let x = the length and y = the width, then the problem is to solve:

$$x - y = 10$$
 and $xy = 600$

Lewinter & Widulski

The Saga of Mathematics

Babylonian Solution

- 1. Take half the difference of the length and width (the *half-difference*): 5
- 2. Square the half-difference: 25
- 3. Add the area: 625
- 4. Take the square root: 25
- The answers are:
 length = square root + half-difference = 30
 width = square root half-difference = 20

Lewinter & Widulsk

The Saga of Mathematics

Plimpton 322

- Catalog #322 in the G. A. Plimpton collection at Columbia University.
- Dated around 1900 to 1600 BC.
- Unfortunately, a piece on the left hand edge has broken off.

Lewinter & Widulski

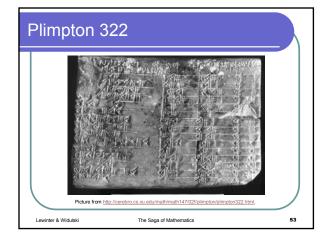
The Saga of Mathematics

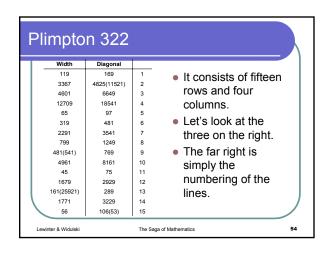
Plimpton 322

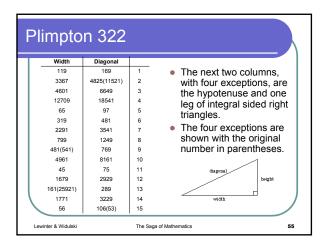
- The most mathematically significant of the Mesopotamian tablets.
- Proves that the Babylonians knew about the Pythagorean Theorem more than a thousand years before Pythagoras was born
- Remember, the Pythagorean Theorem says $a^2 + b^2 = c^2$

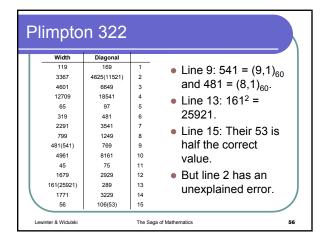
Lewinter & Widulski

The Saga of Mathematics









Plimpton 322

- A Pythagorean triple is a set of numbers which correspond to the integral sides of a right triangle.
- For example, (3, 4, 5) and (5, 12, 13).
- Pythagorean triples can be written parametrically as $a = u^2 v^2$, b = 2uv, and $c = u^2 + v^2$. (see Chapter 3)
- It seems Babylonians were aware of this.

Lewinter & Widulski The Saga of Mathematics 5

Plimpton 322 119 169 The fourth column gives 4825 the values of $(c/a)^2$. (12709/13500)2 12709 18541 These values are the 65 squares of the secant of 319 481 angle B in the triangle. (799/960)² 799 1249 • This makes the tablet 481 9 the oldest record of 10 4961 8161 trigonometric functions. 45 11 It is a secant table for 2929 12 (161/240)2 161 289 13 angles between 30° and 3229 14 Lewinter & Widulski The Saga of Mathematics

Plimpton 322 What did they want 119 169 4825 2 with a secant table? Since Babylonians 12709 18541 never introduced a 319 481 measure of angles in 3541 2291 the modern sense, it is believed that this 4961 8161 10 was just a benefit of their goal in 2929 12 measuring areas of squares on the sides 3229 14 15 of right triangles. Lewinter & Widulsk

Pythagorean Problems

- 4 is the length and 5 the diagonal. What is the breadth?
- Solution: Its size is not known. 4 times 4 is 16. 5 times 5 is 25. You take 16 from 25 and there remains 9. What times what shall I take in order to get 9? 3 times 3 is 9. 3 is the breadth.

Lewinter & Widulski The Saga of Mathematics 6

Pythagorean Problems

- A beam of length 0;30 stands in an upright position against the wall. The upper end has slipped down a distance 0;6. How far did the lower end move from the wall?
- Solution: A triangle is formed with height the difference 0;24 and diagonal 0;30. Squaring 0;30 gives 0;15. Squaring 0;24 gives 0;9,36. Square root the difference 0;5,24 and the result is 0;18.

Lewinter & Widulski

The Saga of Mathematics

Why did they use 60?

- Three reasons have been suggested:
 - Theon of Alexandria believed as many other historians that 60 has many factors making certain fractions have nice sexagesimal representation.
 - "Natural" origin the Babylonian year contained 360 days, a higher base of 360 was chosen initially then lowered to 60.
 - Merger of two people, one with a decimal and one with a base-6 system.

Lewinter & Widulski

The Saga of Mathematics

62